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aDepartment of Electrical and Computer Engineering, Swanson School of Engineering,
University of Pittsburgh, Pittsburgh, PA, 15261, USA

bDepartment of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, 15260, USA
cDepartment of Medicine, Division of Geriatrics, University of Pittsburgh, Pittsburgh,

PA, 15261, USA

Abstract

Background: The time evolution and complex interactions of many nonlin-

ear systems, such as in the human body, result in fractal types of parameter

outcomes that exhibit self similarity over long time scales by a power law in

the frequency spectrum S(f) = 1/fβ. The scaling exponent β is thus often

interpreted as a “biomarker” of relative health and decline.

New Method: This paper presents a thorough comparative numerical analy-

sis of fractal characterization techniques with specific consideration given to

experimentally measured gait stride interval time series. The ideal fractal

signals generated in the numerical analysis are constrained under varying

lengths and biases indicative of a range of physiologically conceivable frac-

tal signals. This analysis is to complement previous investigations of fractal

characteristics in healthy and pathological gait stride interval time series,

with which this study is compared.

Results: The results of our analysis showed that the averaged wavelet coef-
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ficient method consistently yielded the most accurate results.

Comparison with Existing Methods: Class dependent methods proved to

be unsuitable for physiological time series. Detrended fluctuation analysis

as most prevailing method in the literature exhibited large estimation vari-

ances.

Conclusions: The comparative numerical analysis and experimental appli-

cations provide a thorough basis for determining an appropriate and ro-

bust method for measuring and comparing a physiologically meaningful

biomarker, the spectral index β. In consideration of the constraints of appli-

cation, we note the significant drawbacks of detrended fluctuation analysis

and conclude that the averaged wavelet coefficient method can provide rea-

sonable consistency and accuracy for characterizing these fractal time series.

Keywords: fractals, time series analysis, self similarity, gait, stride

intervals, detrended fluctuation analysis, wavelets, 1/f process

1. Introduction1

The human body is comprised of many physiological systems which inter-2

act in a nonlinear manner (Eke et al., 2000, 2002; Glass, 2001; Glenny et al.,3

1991; Goldberger and West, 1987; Huikuri et al., 1998, 2000; Ivanov et al.,4

1999). Accordingly, changes in functional outcomes in a given physiological5

system may be caused by trends in either one or many other systems (Eke6

et al., 2000, 2002; Peng et al., 1995b). Disease, aging, genetic disorders,7

and trauma can have significant effects on many physiological functional8

outcomes like gait (Hausdorff et al., 1999, 2000, 1997, 1995, 1996). The lo-9

comotor system consists of a group of components from the central nervous,10

musculoskeletal, and other physiological systems. Generally, locomotor sys-11
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tem consists of the cerebellum, the motor cortex, and the basal ganglia,12

as well as visual, vestibular, and proprioceptive sensors (Hausdorff et al.,13

1995, 1996). This may be seen as a generalized control system. The cerebel-14

lum and basal ganglia receive information for processing, and sends control15

signals by the motor cortex. Current state information and feedback are16

provided by internal and external inputs from proprioceptive and sensory17

nerve and visual signals (Hausdorff et al., 1995, 1996; Eke et al., 2002). In18

a healthy subject, a stable walking pattern is maintained by the constant19

dynamic interaction between all of the components of the locomotor system.20

Neurophysiological changes may alter the locomotor system’s ability to21

correctly modulate dynamic changes in the gait process (Hausdorff et al.,22

1997). For example, decreased nerve conduction velocity, loss of motor neu-23

rons, decreased proprioception, muscle strength, and central processing ca-24

pabilities are notable declines due to advancing age (Hausdorff et al., 1997).25

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease which26

severely affects the function of the motor neurons of the cerebral cortex,27

brain stem, and spinal cord (Hausdorff et al., 2000). Muscle weakness, in-28

creased fatigue and decreased endurance are characteristic of ALS (Sharma29

et al., 1995; Sharma and Miller, 1996). Parkinson’s Disease (PD) and Hunt-30

ington’s Disease (HD) are both neurodegenerative diseases which affect the31

basal ganglia (Hausdorff et al., 1997). PD and HD are marked by irregular32

of central motor control, the most apparent outcome of which is a chor-33

eiform or “dancing” like gait (Blin et al., 1990; Hausdorff et al., 1997). The34

common consequence among all of these disorders is increased stride inter-35

val time (Hausdorff et al., 1997). However, increased stride interval time36

alone is generally not indicative of any neurodegenerative disease, so the37

fluctuations of the stride interval must be considered to reveal any unique38
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mechanisms of decline (Hausdorff et al., 1997, 2000). It is apparent that in39

general, such changes to components of the locomotor system from disease40

and aging result in abnormal gait. However, the identity and severity of the41

underlying mechanism(s) causing the functional decline are still unknown,42

and can be extremely difficult to identify and characterize due to the highly43

nonlinear and complex interactions of the constituent physiological systems44

(Hausdorff et al., 1997, 2000; Bassingthwaighte, 1988; Bassingthwaighte and45

Bever, 1991).46

Stride interval time series, like many physiological processes, have been47

observed to possess complex statistical properties (Glenny et al., 1991; Gold-48

berger and West, 1987; Ivanov et al., 1999; Hausdorff et al., 1997; Bassingth-49

waighte and Bever, 1991; Delignières et al., 2004; Kantelhardt et al., 2002;50

Peng et al., 1995a; Shlesinger, 1987). This phenomenon is due to the time51

evolution and complex interactions of many dynamical systems, imposed52

with random fluctuations, resulting in chaotic processes (Bak and Chen,53

1991). The goal of fractal time series analysis is to establish a metric which54

can indicate this property and the nature of the statistics, correlation, and55

other unique properties of time evolving system parameters (Delignières56

et al., 2004; Mandelbrot, 1985; Mandelbrot and Van Ness, 1968; Delignieres57

and Torre, 2009; Delignieres et al., 2006). The fractal description of pat-58

terns, self similarity, and statistical properties at many time scales can reveal59

new meaningful information about the process (Delignieres and Torre, 2009;60

Delignieres et al., 2006). Thus, these techniques are very useful when eval-61

uating physiological variables which are the outcome of complex dynamical62

system interaction.63

The first primary aim of this paper is to clarify the interpretations of64

time series analyses for identifying the fractal properties of 1/fβ type scale65
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invariant processes and highlight the inherent limitations of common meth-66

ods. To validate the concept of fractal time series analysis, a number of67

established time, frequency, and time-scale domain estimation techniques68

are implemented and tested. The tests include the entire range of 1/fβ pro-69

cesses, with special consideration given to simulated signals most indicative70

of physiological processes. A matter which is often obfuscated in other stud-71

ies of fractal analysis was the choice of a metric for the fractal characteristic.72

For consistency, the process parameter β, also referred to as the spectral in-73

dex, was used as a metric for the fractal characteristic. The parameter β is74

convertible to other values commonly referred in the literature such as the75

fractal dimension D, the Hurst exponent H, and the scaling index α (Eke76

et al., 2002). β was chosen for use here for its ease in interpretation with77

respect to the power law spectrum of 1/fβ processes.78

A second aim is to address the applications of these techniques to time79

series obtained in a physiological setting and their inherent constraints. A80

common limitation in acquiring physiological data, such as gait stride in-81

tervals, is the time series length (Eke et al., 2002; Delignieres et al., 2006;82

Bryce and Sprague, 2012). In many instances, the physical limitations of83

the test subject, equipment design, and other factors of the experimental84

setting limit the available length of acquired data. Accordingly, this pa-85

per will provide an evaluation of the algorithms with respect to short and86

long time series. It has also been recognized that the parameters of many87

physiological processes, such as stride interval time series, are by nature not88

zero mean (Hausdorff et al., 1999, 2000, 1997, 1995, 1996). To understand89

the effect of a time series with a nonzero mean, the estimation accuracy of90

each method was considered under three cases: (1) the normalized signal91

(2) the normalized signal with positive unit mean (3) a zero mean signal92
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from the normalized signal minus its mean. Finally, to verify the efficacy93

of the methods in the physiological setting, each method will be applied to94

published gait stride interval time series. The spectral index is calculated95

for gait time series from subjects with PD, HD, ALS and healthy controls96

(Hausdorff et al., 2000, 1996). The calculated values provide a comparative97

basis with respect to other studies aiming to determine long range correla-98

tions and fractal behavior of gait stride interval time series (Hausdorff et al.,99

1995; Delignieres and Torre, 2009).100

2. Power spectral densities of fractal process101

It has been noted that the power spectral density is an informative per-102

spective of fractal processes, which exhibits inverse power law scaling be-103

havior by S(f) = 1/fβ. Processes of this type are henceforth referred to104

as 1/fβ processes (Eke et al., 2002; Delignieres and Torre, 2009; Shlesinger,105

1987; Kasdin, 1995; Chen et al., 1997; Pilgram and Kaplan, 1998). Generally106

1/fβ process can be classified as belonging to one of two classes, fractional107

Gaussian noise (fGn) or fractional Brownian motion (fBm) (Eke et al., 2002;108

Delignieres et al., 2006). For fGn class signals, the probability distribution109

of a segment of the signal is independent of the segment size and its tempo-110

ral position in the signal (Eke et al., 2002). Thus, the correlation structure111

and any statistical descriptions of the process do not change over time, so112

the process is stationary (Delignieres and Torre, 2009). In an fBm signal,113

the probability distribution in a larger segment is equal to a distribution114

in a smaller segment when the distribution in the large segment is rescaled115

(Eke et al., 2002). Here, the inverse power law relationship is observed for116
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the calculation of some statistical measure m on the segment of length n117

logmn = logp+Hlogn (1)

This implies the power law relationship where p is a proportionality factor118

and H is the Hurst exponent and H∃[0, 1] . The Hurst exponent is a com-119

monly used metric for indicating the fractal nature of a fractional Gaussian120

noise or fractional Brownian motion process (Cannon et al., 1997; Davies121

and Harte, 1987; Crevecoeur et al., 2010). These processes have the prop-122

erty that the cumulative summation of an fGn signal results in a fBm signal123

(Eke et al., 2002). As a result, a given process is interconvertible from one124

class to the other by the integral or derivative (Eke et al., 2002; Shlesinger,125

1987; Kasdin, 1995; Chen et al., 1997; Pilgram and Kaplan, 1998). This ne-126

cessitates a unique Hurst exponent specific to each class of processes. These127

can be denoted HfGn∃[0, 1] and HfBm∃[0, 1] (Eke et al., 2002; Delignieres128

et al., 2006). H = 0.5 in each class is the special case, where HfGn = 0.5 is129

white Gaussian noise (β = 0) and HfBm = 0.5 is Brownian motion (β = 2)130

(Eke et al., 2002; Delignieres and Torre, 2009). White Gaussian noise is131

the characteristic process of the fractional Gaussian noise class of 1/fβ pro-132

cesses (Eke et al., 2002). The important property of white Gaussian noise133

is that energy is equally distributed for all frequencies. Thus, it has a flat134

power spectrum and β = 0. HfGn < 0.5 is anti-correlated Gaussian noise,135

and HfGn > 0.5 is correlated noise (Delignieres and Torre, 2009). Brownian136

motion is the characteristic process for the fBm class. These processes ex-137

hibit a 1/fβ power spectrum where β = 2 (Eke et al., 2002; Hausdorff et al.,138

2000). In this case, successive outcomes in the process are correlated, and139

the process exhibits non-stationary time evolution (Delignieres and Torre,140

2009). HfBm < 0.5 is anti-persistent Brownian motion, and HfBm > 0.5141
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is persistent Brownian motion, where HfBm = 0 is pink noise of 1/f1 (Eke142

et al., 2002). Shown in Figure 1 (a) (c) and (e) are fGn signals of H = 0,143

0.5, 1 and their corresponding (cumulatively summed) fBm signals Figure 1144

(b) (d) and (f). This provides an overview of signals of each process class145

and their interconvertible relationship.146
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Figure 1: Range of fGn and fBm class signals: (a) HfGn = 0; (b)

HfBm = 0; (c) HfGn = 0.5; (d) HfBm = 0.5; (e) HfGn = 1; and (f)

HfBm = 1.

In the case where β = 1, some correlation between timescales exists147

but is weak (Delignieres et al., 2006). In summary, a given process can be148

classified as belonging to one of these two distinct classes where β = 1 is the149

distinct boundary between each (Kasdin, 1995). The relationship between150
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each class’s Hurst exponent and the power spectrum 1/fβ can be observed151

by the by the following relationships (Eke et al., 2002)152

HfGn =
β + 1

2
(2)

153

HfBm =
β − 1

2
(3)

Thus, the range of all fGn and fBm processes for 0 < H < 1 correspond154

to −1 < β < 3, where the boundary between each class lies at β = 1155

(Eke et al., 2002; Delignieres et al., 2006). Figure 2 gives an overview of an156

fGn Gaussian white noise (β = 0), pink noise (β = 1), and fBm Brownian157

motion or red noise (β = 2). Adjacent to each signal is its its log-log power158

spectrum, and the linear regression with slope indicating the corresponding159

β value.160

Many well developed fractal estimation algorithms for finding the Hurst161

exponent are specific to each process class. The choice of a method to evalu-162

ate the fractal properties of a signal will accordingly be difficult in a setting163

where it is unclear which of the two classes the signal belongs. If such164

methods are inappropriately applied, the calculated class specific Hurst ex-165

ponent will be incorrect. Consequently, its interpretation as a physiological166

biomarker will be ambiguous and potentially misleading. Awareness of this167

hazard is especially critical whenever the process lies at the boundary be-168

tween fractional Gaussian noise and fractional Brownian motion. This case,169

when β = 1, a signal represents the type of fractal process most typically170

exhibited by physiological systems (Eke et al., 2002; Glass, 2001; Goldberger171

and West, 1987; Huikuri et al., 1998, 2000; Ivanov et al., 1999; Peng et al.,172

1995a; Sejdić and Lipsitz, 2013). As a result of this dichotomy, signal clas-173

sification, the choice of a fractal characterization method, and the interpre-174

tation of its result becomes a critical yet inherently difficult procedure.175
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Figure 2: Sample time series and corresponding PSD with regression: (a)

time series for β = 0; (b) PSD of β = 0 time series; (c) time series for

β = 1; (d) PSD of β = 1 time series; (e) time series for β = 1; and (f) PSD

of β = 2 time series.

3. Algorithms for estimation of β values176

For a 1/fβ process, β values can be estimated in time, frequency or time-177

frequency (time-scale) domains. Here, we overview several most prominent178

implementations in literature concerned with characterizing physiological179

phenomena.180
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3.1. Time Domain181

This section overviews the three time domain fractal techniques imple-182

mented here. These are dispersional analysis, bridge detrended scaled win-183

dow variance (bdSWV), and detrended fluctuation analysis (DFA).184

3.1.1. Dispersional Analysis185

For dispersional analysis, we refer to the proposal of this technique186

by Bassingthwaighte, et al (Bassingthwaighte, 1988; Bassingthwaighte and187

Bever, 1991; Bassingthwaighte and Raymond, 1995, 1994). This time do-188

main based algorithm estimates the fractal characteristic by the variances189

of the mean of signal segments. Then, the standard deviation on various190

intervals is plotted versus the interval lengths on a log-log plot. A stan-191

dard linear regression to this plot will have a slope indicating the fractional192

Gaussian noise Hurst exponent HfGn, and the spectral index is found by193

β = 2HfGn − 1 (Eke et al., 2002).194

3.1.2. Scaled Window Variance195

For evaluating processes by scaled window variance, we refer the method196

proposed by Cannon, et al (Eke et al., 2002; Delignieres et al., 2006; Cannon197

et al., 1997; Bassingthwaighte and Raymond, 1999). Similar to dispersional198

analysis, the variance is found on increasing sized intervals of the signal. This199

method introduced a modification to remove local trends on each interval.200

In this method, bridge detrending is implemented to remove the local trend.201

The data in each interval is detrended by subtracting the “bridge”, a line202

connecting the first and last points in the interval. Then, the standard203

deviation is calculated for each detrended interval. Finally, the standard204

deviation of each interval is plotted versus the interval size on a log-log plot.205
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A standard linear regression to this plot will have a slope indicating the206

fractional Brownian motion Hurst exponent HfBm, and the spectral index207

is found by β = 2HfBm + 1 (Eke et al., 2002).208

3.1.3. Detrended Fluctuation Analysis209

The approach for calculating the fractal index by detrended fluctuation210

analysis (DFA) is provided by Peng, et al (Peng et al., 1995b,a, 1994), and it211

has been thoroughly evaluated by others for many applications (Kantelhardt212

et al., 2002; Bryce and Sprague, 2012; Bardet and Kammoun, 2008; Caccia213

et al., 1997; Chen et al., 2002; Heneghan and McDarby, 2000; Hu et al.,214

2001; Kantelhardt et al., 2001; Schepers et al., 1992; Willson and Francis,215

2003). DFA calculates the proposed “scaling exponent” α which is a useful216

to indicate the randomness of a time series over the boundary between fGn217

and fBm processes. The spectral index β is related to the DFA parameter218

α by (Eke et al., 2002)219

β = 2α− 1 (4)

Implemented here is general scheme where the smallest interval is restricted220

to d N100 , 10e and the largest interval to dN10 , 20e.221

3.2. Frequency Domain222

These techniques directly evaluate the power law scaling property of a223

fractal series’ power spectral density. There are many available methods for224

performing the spectral estimation required to evaluate a fractal process’s225

frequency domain 1/fβ power law (Pilgram and Kaplan, 1998; Heneghan226

and McDarby, 2000; Fougere, 1985). Here, the periodogram method and227

Eke’s lowPSDwe method are implemented (Eke et al., 2000, 2002; Delignieres228

et al., 2006). The periodogram method is used in calculating S(f), the229
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square of the FFT after applying a Gaussian window. Eke improved on this230

method to more accurately characterize β for both signal classes. First, for231

the time series mean is subtracted, a parabolic window applied, and a bridge232

line connecting the first and last point of the signal is subtracted from the233

series. After calculating the power spectral density by the periodogram, all234

frequency estimates for f < 1/8fmax are omitted. Again, β is found by235

linear regression of the log-log power spectral density (Eke et al., 2002).236

3.3. Time-Scale Domain237

Proposed time-scale techniques by the wavelet transform are implemented238

(Eke et al., 2002; Audit et al., 2002; Jones et al., 1999; Simonsen et al., 1998;239

Veitch and Abry, 1999; Arneodo et al., 1996). The Average Wavelet Coeffi-240

cient (AWC) method described by Simonsen and Hansen (Simonsen et al.,241

1998) is conveniently implemented for this function. For the continuous242

wavelet transform of signal where in this case a twelfth order Daubechies243

wavelet is used (Simonsen et al., 1998). The number of levels for the Mallat244

algorithm discrete wavelet transform is chosen with respect to the signal245

length, determined here as never lower than 23 or greater than 27 (Mallat,246

1989). The result of the transformation provides the scale and transpose247

coefficients for the signal at the each of the prescribed levels. To find the248

averaged wavelet coefficient, the arithmetic mean with respect to the trans-249

lation coefficient is calculated. The average coefficients versus the levels are250

plotted on a log-log plot. A standard linear regression to this plot will have251

a slope HfBm + 1
2 , and the spectral index is found by β = 2HfBm + 1 (Eke252

et al., 2002).253
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4. Evaluation of Algorithms254

4.1. Discrete 1/fβ Process Generation255

The first step in the analysis was the generation of a 1/fβ fractal process.256

Li, et al proposed a method to create a filter of fractional order for generating257

fBm fractal processes by stochastically fractional differential equations (Li,258

2010; Li and Lim, 2006; Li and Chen, 2009). Kasdin extended this method259

for a generalized fractional filter inclusive of fGn and fBm signals, or 1/fβ260

processes (Kasdin, 1995). This method was implemented for this numerical261

analysis of 1/fβ processes. The transfer function of the fractional system262

that follows the power law of β is given by263

h(n) =
Γ(β/2 + n)

n!Γ(β/2)
(5)

The realization of the process x(n) is found by the convolution operation264

x(n) = w(n) ∗ h(n) (6)

where w(n) is randomly generated Gaussian white noise.265

4.2. Numerical Analysis of Simulated Data Sets266

The basis of this computational evaluation is the generation of 1/fβ267

power law processes. For completeness, β is calculated for all possible Hurst268

exponents in fGn and fBm classes for a total range−1 ≤ β ≤ 3. This is inclu-269

sive of fractional Gaussian noise and fractional Brownian motion processes270

for 0 < H < 1. However, the anti-correlated fGn (β < 0) and persistent fBm271

(β > 2) regime signals are not be a matter of serious consideration in regard272

to physiological processes. The methods are evaluated over a range of time273

series lengths in order to observe the relationship between signal length and274

calculation accuracy for each fractal method. Given the length limitations275
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of previously recognized physiological data sets, time series lengths of 50,276

100, 200, 400, 600, 800, 1,000, 2,500, 5,000, 7,500, and 10,000 points are277

considered. Given the stochastic nature of these processes, the procedure of278

signal generation and calculation is implemented in a Monte Carlo scheme,279

where each realization is repeated 1,000 times. In each iteration for a set280

signal length, the time series is normalized and evaluated by each of the281

methods. Next, and a unit mean offset is added, and this signal reevaluated282

by each method. Then the mean of the series is subtracted from the offset283

series, resulting in a zero mean signal, and reevaluated. These three cases284

are calculated for each signal length for 1,000 realizations, and the mean285

value of β from each estimation is calculated. This computational scheme286

is the basis of the theoretical qualification of the fractal characterization287

algorithms, with strong consideration of the two recognized constraints of288

signal length and mean. Over the range of β, processes of the given length289

are generated for [−1, 3] incremented by 0.01.290

4.3. Numerical Analysis of Stride Interval Data Sets291

Lastly, the published data sets are re-examined. First considered are292

right foot gait stride interval time series from normal subjects, consistent293

with previous investigation by Hausdorff, et al in the study of long range cor-294

relations in stride interval fluctuations (Hausdorff et al., 1996) and reconsid-295

ered by Deligieneras (Delignieres and Torre, 2009). Each of 10 healthy adult296

subjects walked at a self selected slow, normal, and fast pace, providing 30297

total time series. This study, henceforth referred to as Study I, implemented298

a power spectral analysis and DFA to find β and α respectively (Hausdorff299

et al., 1996) to qualify and compare each method for fractal dynamics in300

gait. The mean time series length for the ten healthy control subjects is301
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3,179 points. Given the signals’ significant length, these are considered to302

be a basis set for evaluating the algorithm performance under sufficiently303

long signal lengths. For consistency with the previous investigations, only304

the first 2,048 points are used for calculation.305

The second set comes from an investigation of gait dynamics in neurode-306

generative diseases. The data was obtained by Haussdorf, et al in investiga-307

tions of healthy and pathological correlations in stride interval time series308

(Hausdorff et al., 2000, 1997, 1996). The signal lengths are considerably309

constrained due to the physical limitations of the subject. An example of310

healthy and pathological (ALS) time series provided by Studies I and II are311

shown in Figure 3 with their corresponding PSDs and regression lines.312
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Figure 3: Sample stride interval time series and the corresponding PSDs:

(a) Study I (healthy) time series; (b) PDS of Study I (healthy) sample

time series; (c) Study II (ALS) time series; and (d) PSD of Study II (ALS)

time series.

In the investigation henceforth referred to as Study II, α was calculated313

by DFA. To again retain consistency with the previous investigation, only314

the right foot stride interval time series is considered for calculation. Listed315
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in Table 1 are the total number and mean length of time series for each316

of the cases of pathology and the control. The evaluation here is aimed to317

demonstrate the algorithm performance in the regime of short time series.318

Table 1: Number of time Series and mean length, Study II. ALS =

Amyotrophic Lateral Sclerosis, HD = Huntington’s Disease, PD =

Parkinson’s Disease, CO = Control.

ALS HD PD CO

Number of Series 13 20 15 16

Mean Length 196 242 184 255

For Study I, we fit a linear mixed model with estimated beta coefficient319

as the dependent variable; walking speed, calculation method and their in-320

teraction as fixed effects; and a participant random effect (Table 2). For321

Study II, we fit a similar model with participant group, calculation method322

and their interaction as fixed effects (Table 3). We used appropriately con-323

structed means contrasts to obtain statistical significance of between-method324

comparisons of interest.325

5. Results326

Presented in this section are the results of the numerical analysis scheme.327

Secondly, the results from the evaluation of the published physiological data328

sets of long time series from healthy individuals and shorter time series of329

neurodegenerative disease subjects are examined. From the results of the330

numerical analysis, this paper seeks to indicate which of the estimators can331

most effectively evaluate fractal nature of the physiological time series under332

the various constraints. The importance of accurately measuring β of the333
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physiological time series is also presented in this section, so the calculations334

of the physiological data are compared with previously published results.335

5.1. Overall Theoretical Performance336

Considered first is the estimation accuracy of the algorithms for −1 ≤337

β ≤ 3. This presents the performance of the general scheme, which calculates338

the mean spectral index β of 1, 000 random fractal signals of lengths varying339

from 50 to 10, 000 points. This is under a normalized condition. Shown are340

the mean-square error (MSE) of the estimators on the range −1 ≤ β ≤ 3 for341

signal lengths of of 100 and 10,000 points in Figure 4(a) and (b), respectively.342
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Figure 4: MSE vs β: (a) n = 100 points; (b) n = 10,000 points. ♦ AWC; +

bdSWV; � DFA; ∗ Disp; × PSD; ◦ lowPSDwe.

The results of the analysis indicate that some estimators are indeed not343

class independent. Figure 4(a) shows the MSE of the estimators on the344

range −1 ≤ β ≤ 3 for signal length of 100. For a short signal length, it345

is clear that bdSWV and dispersional analysis estimators are fBm and fGn346

class dependent, respectively. The bdSWV method exhibits very high MSE347

for the fGn class (β < 1) and dispersional analysis shows high MSE for all348
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fBm class signals (β > 1). Similar error in the fGn class is noted for the349

AWC method, and the error decreases for β > 1. DFA exhibits relatively350

high MSE values for both fBm and fGn processes with a relatively flat351

profile on this range. However, DFA demonstrates slightly greater accuracy352

than AWC method for signals close to white Gaussian fGn signals. Both353

power spectral density methods, the periodogram (PSD) and the modified354

method lowPSDwe show quite consistent accuracy for all signal classes with355

a relatively flat MSE profile across the range of β. Interestingly, for short356

signal lengths, the basic periodogram (PSD) method is more accurate than357

the lowPSDwe method. However, the MSE of the PSD increases significantly358

for persistent fBm type signals (β > 2).359

Considering the case of long time series length of 10,000 points given in360

Figure 4(b) it is clear that the bdSWV method has significantly high MSE361

for all fGn class signals (β < 1). Similarly, dispersional analysis demon-362

strates high MSE for all fBm class signals (β > 1). AWC shows relatively363

consistent MSE for both classes, though the MSE decreases as the signal364

type approaches Brownian motion (β = 2). There is though an observable365

MSE increase for persistent fBm signals. DFA similarly demonstrates class366

independent behavior, with lower MSE for fGn class signals. Again in the367

long signal length case, DFA indicates DFA exhibits a relatively consistent368

MSE in both the fGn and fBm class. Both power spectral density methods,369

the periodogram (PSD) and the modified method lowPSDwe demonstrate370

similar MSE, which is lowest for white Gaussian noise fGn processes. Higher371

MSE is observed for fBm class signals, though the error is not as high as in372

the class dependent dispersional and bdSWV methods. The modified PSD373

method shows higher accuracy than the standard periodogram for persistent374

fBm type signals (β > 2).375

19



Given the clear relationship of the MSE and the signal length, examined376

next is the MSE value over a range of signal lengths. Each value is the377

1,000 realization ensemble mean MSE for the given length. For conciseness,378

anti-correlated fGn (β = −1) and persistent fBm (β = 3) evaluations are379

excluded. Shown in Figure 5(a) is the mean-square error (MSE) of the380

estimators on the range 50 ≤ N ≤ 10, 000 for white Gaussian noise fGn381

signals of β = 0.382

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

n

M
S
E

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

n

M
S
E

(b)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

n

M
S
E

(c)

Figure 5: MSE vs n: (a) β = 0; (b) β = 1; (c) β = 2. ♦ AWC; + bdSWV;

� DFA; ∗ Disp; × PSD; ◦ lowPSDwe.

For the white Gaussian noise case of fGn class signals β = 0, the MSE383

of the bdSWV method is high regardless of signal length. The MSE for384
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dispersional analysis decreases as signal length increases, and at long signal385

length is among of the most accurate estimators for this signal class. In-386

terestingly, DFA shows diminishing returns in accuracy beyond N = 1, 000.387

AWC consistently shows increasing accuracy as signal length increases. For388

the white Gaussian case of fGn signals, the power spectral density meth-389

ods again exhibit the lowest overall MSE which decreases for greater signal390

length.391

The mean-square error of the estimators on the range 50 ≤ N ≤ 10, 000392

is observed in the critical case of the boundary of fGn and fBm signals for393

1/fβ processes of β = 1. Here, it is expected to see that regardless of signal394

length, both class dependent methods bdSWV and dispersional analysis395

exhibit crossover and a similar order of MSE. DFA shows initially high396

MSE that decreases as signal length increases, though again with quickly397

diminishing returns. The power spectral density methods show a similar398

profile. AWC again shows increasing accuracy as the length is increased. For399

shorter length signals cases, the MSE of AWC, DFA, and spectral methods400

are clustered closely together.401

The third case consideration is the MSE versus length for Brownian402

motion fBm signals of β = 2. For the Brownian motion process indicative of403

the fBm class, the MSE of dispersional analysis is high regardless of signal404

length, indicating its class dependence. The MSE of bdSWV is lower than405

in the fGn class, though it is still significantly greater than other methods.406

DFA reaches its maximum accuracy at N = 1, 000 points. AWC exhibits407

the sharpest drop off in error of all methods, and regardless of signal length408

has generally the lowest error for Brownian motion fBm class signals. The409

spectral methods show low MSE for very short time series, but quickly410

diminishing returns for signals greater than 1,000 points.411
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Considering the class dependence of the bdSWV and dispersional analy-412

sis methods, subsequent observations of the results will not consider findings413

for these methods. This is in the interest of determining a robust class inde-414

pendent estimator. Accordingly, lowPSDwe is considered class independent415

for its modifications which allow a more accurate estimation of fBm pro-416

cesses than the unmodified periodogram method. In conclusion, further417

elaborations on the MSE, mean error (ME), and standard deviation (SD) of418

techniques will consider DFA, lowPSDwe, and AWC.419
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Figure 6: MSE vs β: (a) n = 100 points; (b) n = 600 points; (c) n = 2,500

points; and (d) n = 10,000 points. ♦ AWC; � DFA; ◦ lowPSDwe.

Figure 6 shows the mean-square error of the estimators DFA, lowPSDwe,420
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and AWC on the range −1 ≤ β ≤ 3 for signal length of 100, 600, 2,500, and421

10,000. For the two short series sets (N = 100, N = 600), all methods422

exhibit a relatively consistent profile of MSE over the entire range of β. For423

short time series, AWC is most accurate in the fBm class, and lowPSDwe is424

most accurate in the fGn class. DFA is generally less accurate than AWC and425

lowPSDwe. Though DFA may be more accurate than AWC at estimating a426

white Gaussian fGn process, the accuracy of lowPSDwe is still preferable. A427

similar observation can be made in longer time series of length 600, 2,500,428

and 10,000. DFA shows preferable performance to AWC near white Gaussian429

noise, and here the accuracy of lowPSDwe is always favorable. An important430

characteristic of AWC is its relatively flat MSE over the range of β for all431

signal lengths. A notable increase in MSE exists for lowPSDwe in the fBm432

class as the length is increased, due to the effects of more low frequency433

content in these signals.434

The definition of MSE necessarily combines the bias and variance into435

one value. To distinguish the individual effects of bias and variance in the436

notion of the estimators’ MSE on this range, the bias (mean error) and437

variance (standard deviation) will be examined separately in the following438

figures. Figure 7 shows the mean error (ME) of AWC, lowPSDwe, and DFA439

on the range −1 ≤ β ≤ 3 for signal lengths of 100, 600, 2,500, and 10,000.440

Figure 7 indicates that for short time series, the MSE of AWC is largely441

influenced by bias. This effect is diminished in the fBm regime. The mean442

error of DFA is lower than lowPSDwe and AWC for the fGn class. The443

MSE of DFA is consistently influenced by bias in the fBm range. lowPSDwe444

exhibits less overall fluctuation, and estimation bias increases with β. This445

is likely due to the influence of more low frequency components when eval-446

uating the linear regression of the power spectral density. For subsequently447
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Figure 7: ME vs β. (a) n = 100 points; (b) n = 600 points; (c) n = 2,500

points; and (d) n = 10,000 points. ♦ AWC; � DFA; ◦ lowPSDwe.

longer signal lengths of 600, 2,500, and 10,000, the bias effects on the MSE448

of DFA and AWC are comparable beyond β = 0.449

Figure 8 shows the standard deviation (σ) of DFA, lowPSDwe, and AWC450

on the range −1 ≤ β ≤ 3 for signal length of 100, 600, 2,500, and 10,000.451

For short signal length, the standard deviation of DFA is significant. The452

standard deviation of lowPSDwe and AWC are very consistent on the range453

of β. lowPSDwe shows the overall lowest standard deviation for both signal454

classes for all signal lengths. For longer signal lengths, the standard devi-455

ation profile of DFA is relatively unchanged. The profile of AWC is flat in456
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each case, with increasing accuracy with signal length. DFA exhibits lower457

standard deviation than AWC for fGn class signals of length 600 and 2,500,458

though the accuracy of lowPSDwe is still preferential.459
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Figure 8: σ vs β: (a) n = 100 points; (b) n = 600 points; (c) n = 2,500

points; and (d) n = 10,000 points. ♦ AWC; � DFA; ◦ lowPSDwe.

5.2. Effects of Nonzero Mean460

5.2.1. Added Unit Mean461

Presented in this section are findings for realizations of the algorithms for462

the complete range −1 ≤ β ≤ 3 on an extension of the previously described463

scheme where a the signal is normalized and unit mean is added. Figure464
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9 (a) and (b) show the mean-square error of the estimators on the range465

−1 ≤ β ≤ 3 for biased signal length of 100 and 10,000, respectively.466
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Figure 9: MSE vs β, added unit mean: (a) n = 100 points; (b) n = 10,000

points. ♦ AWC; + bdSWV; � DFA; ∗ Disp; × PSD; ◦ lowPSDwe.

Compared to the original normalized signal condition shown in Figure467

9, the additional unit mean affects only the MSE of the frequency and time-468

scale domain methods. The adjustments introduced to the power spectral469

density method by lowPSDwe avoid the error effects of nonzero mean. It470

is critical to note that a significant DC component from a series mean will471

largely influence a low frequency range of the power spectral density, and472

subsequently the linear regression estimation for the spectral estimators.473

However, the constant unit mean has diminishing influence on increasingly474

non-stationary processes, and thus the effect is diminished as β increases.475

This observation is reflected in the findings of the dependence of the MSE476

on signal length with nonzero mean. Inaccuracy in the AWC method is477

significantly influenced in the fGn class, and error is still generally present478

for all fGn and fBm class signals. The nonzero mean has no effect on the479

time domain methods.480
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5.2.2. Removal of Mean481

Finally observed is the estimation accuracy when the series mean is re-482

moved. These results are from the third extension of the numerical analysis483

scheme. From the second case where the signal is normalized and unit mean484

is added, the mean of the resulting signal is calculated and subtracted from485

the time series. Shown in Figure 10 (a) and (b) are the mean-square error486

of the estimators on the range −1 ≤ β ≤ 3 for a zero mean signal length of487

of 100 and 10,000, respectively.488
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Figure 10: MSE vs β, zero mean: (a) n = 100 points; (b) n = 10,000

points. ♦ AWC; + bdSWV; � DFA; ∗ Disp; × PSD; ◦ lowPSDwe.

Figure 10 indicates that when the mean is removed by simply subtracting489

the mean value of the series, the estimation accuracy returns to the original490

profile. Thus, removing the series mean is valid to avoid errors in series491

estimation by methods which are sensitive. The original mean square error,492

mean error, and standard deviation profiles are realized when the series493

mean is removed and the series is reevaluated.494
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5.3. Gait Stride Interval Analysis495

This section presents the results of the application of these techniques496

to experimentally measured gait stride interval time series. To keep the497

analysis concise, the methods implemented were those of the lowest MSE498

from each domain class. Thus, β was calculated by DFA, lowPSDwe, and499

AWC. For the AWC calculation, the preprocessing step of mean removal500

is performed. For a thorough evaluation of Study I, β is calculated and501

converted to α by the relationship α = β+1
2 . For clarity, these calculated502

values of β and α are presented separately in Table 2, showing the values503

(mean ± standard deviation) from the study and our calculations for DFA,504

lowPSDwe, and AWC. Furthermore, the calculated values were statistically505

different (p < 0.03) among the used approaches, except between AWC and506

DFA for fast and normal walks (p > 0.07).507

Table 2: A comparative analysis of the algorithms for time series from

Study I.

β α
Slow Normal Fast Slow Normal Fast

Study I
DFA 0.96± 0.13 0.80± 0.07 0.94± 0.09 0.98± 0.07 0.90± 0.04 0.97± 0.05

PSD 1.01± 0.15 0.81± 0.09 0.94± 0.07 1.01± 0.08 0.91± 0.05 0.97± 0.04

Analysis

DFA 0.93± 0.13 0.77± 0.15 0.94± 0.17 0.97± 0.07 0.88± 0.08 0.97± 0.09

lowPSDwe 0.73± 0.15 0.48± 0.09 0.62± 0.17 0.87± 0.08 0.74± 0.05 0.81± 0.09

AWC 1.07±0.17 0.87±0.10 1.00± 0.18 1.03±0.09 0.94± 0.05 1.00± 0.09

Considered next are calculations for shorter time series of pathological508

gait conditions from Study II. Due to the physical limitations of the patients509

under investigation, the shortness of the time series length given in Table510

1 is noted when considering the results of these calculations. Again, the511

spectral index β is calculated by DFA, lowPSDwe, and AWC and converted512
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to the DFA scaling exponent α. The series mean has been removed for513

calculation by AWC. Table 3 shows the published and calculated values514

(mean ± standard error) of β and the corresponding of α for the calculations515

by DFA, lowPSDwe, and AWC methods. Furthermore, the AWC values were516

statistically different from the values calculated by DFA and lowPSDwe (p <517

0.04) in all cases. However, the values calculated by DFA and lowPSDwe518

were not statistically different in any of the cases (p > 0.09).519

Table 3: A comparative analysis of the algorithms for time series from

Study II.

β α
ALS HD PD CO ALS HD PD CO

Study II DFA 0.48±0.13 0.20±0.07 0.64±0.11 0.82±0.09 0.74±0.07 0.60±0.04 0.82±0.06 0.91±0.05

Analysis

DFA 0.66±0.13 0.37±0.12 0.52±0.16 0.60±0.10 0.83±0.07 0.68±0.06 0.76±0.08 0.80±0.05

lowPSDwe 0.56±0.08 0.26±0.09 0.39±0.11 0.49±0.05 0.78±0.04 0.63±0.05 0.70±0.06 0.74±0.03

AWC 0.97±0.10 0.54±0.13 0.73±0.15 0.94±0.06 0.98±0.05 0.78±0.06 0.87±0.08 0.97±0.03

6. Discussion520

6.1. Simulated Signals521

From the results of the theoretical evaluation of these techniques, dis-522

tinct limitations and benefits of each of the methods can be observed. When523

determining an appropriate technique to evaluate the fractal nature of a pro-524

cess, it is critical to consider the time series length, any apparent mean, and525

in some cases the range on which the process’s spectral index might exist. It526

is therefore apparent from our analysis that making a conclusion about the527

fractal nature of short physiological time series can be quite tenuous. The528

nature of physiological data sets and their relationship to ideal 1/fβ profiles529
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should be a significant consideration when drawing conclusions about the530

results of these analyses.531

In the interest of determining class independent estimators, the dis-532

persional and bdSWV methods are clearly not viable. Though developed533

for consideration of fGn and fBm class signals respectively, these methods534

can provide incorrect results for signals typical of physiological processes at535

β = 1. The recommendation to favor class independent methods is to effec-536

tively reduce the burden of determining the signal class before evaluation.537

DFA is a candidate, as it indicates no preferential performance in either538

class. Additionally, the evaluation is unaffected by a non-zero series mean.539

However, the results for DFA have significantly large mean-square error and540

standard deviation for short time series (Bryce and Sprague, 2012). It is541

apparent that DFA has little utility for short time series, and exhibits di-542

minishing returns in accuracy for longer series, as other investigations have543

observed (Delignieres et al., 2006; Bryce and Sprague, 2012; Bardet and544

Kammoun, 2008).545

A significant limitation of the frequency domain methods is the effect of546

low frequencies and DC on the accuracy of these methods. Indeed, a the547

critical property of fractal processes is that the power spectral density is548

not convergent for (ω = 0), and this presents some problems for analysis549

(Li, 2010). However, removing DC and low frequency content from the550

spectrum risks destroying low frequency information, and thus some scale551

invariant features of the process. Additionally, the significantly lower MSE552

observed in the spectral methods for white Gaussian fGn processes is likely553

an artifact of the time series generation by the same principle (Kasdin, 1995).554

Regardless, accurately estimating the properties of white Gaussian processes555

does not present any significant utility with respect to the interest of fractal556

30



characterization of physiological processes, where a simple autocorrelation557

analysis or Lilliefors test may suffice.558

AWC has a more uniform performance for the range of fGn and fBm559

class signals. Though AWC was significantly affected by non-zero mean560

signals, this effect is corrected by the removal of the time series mean be-561

fore evaluation. Unlike the modifications to spectral methods to eliminate562

ill-fitting due to DC or high frequency noise, this is a straightforward pre-563

processing step easily integrated with the main algorithm. This combination564

also provides intact frequency and scale dependent information of the series.565

DFA presents significant risk for short time series and provides no clear566

advantage in many instances, where lowPSDwe can likely provide a more567

accurate complement to AWC analysis. In general, given these two primary568

constraints of non-zero mean and short time series in gait stride interval569

signals, AWC can provide uniformly accurate characterization for short and570

long biased data series. Regardless, discretion of the desired precision and571

accuracy, illustrated by the mean error and standard deviation, is encour-572

aged in all applications. Generally, the MSE of all estimators indicate that573

AWC is a generally robust method, consistent under many circumstances574

and favorable especially under conditions of physiological interest.575

6.2. Stride Intervals Time Series576

The analysis of the physiologically extracted time series provides perhaps577

the most significant indication of the applicability of these methods in a578

physiological setting. Table 2 shows the fractal characterizations for long579

time series of ten healthy adults walking at self selected paces. In these580

time series, the mean amplitude is 0.2025 and the mean of the series is581

1.1481, indicative of the inherent non-zero mean offset. The effects of these582
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signal characteristics are observed in our evaluation of these time series by583

DFA, lowPSDwe, and AWC. For the self selected slow, normal, and fast584

time series, the DFA and AWC methods evaluate a mean spectral index of585

0.88± 0.15 and 0.98± 0.15 respectively. To validate this disparity, consider586

the results of the simulated time series for length of 100 and β = 1. The587

MSE of AWC is preferable in this instance, and is exemplified by observing588

the substantial standard deviation of DFA here. The underestimation of589

the spectral index here by lowPSDwe is noted. Considering physiologically590

meaningful conclusions from the pathological gait data is more difficult given591

the inherently short length of the time series. These evaluations given by592

Table 3 show the findings for short time series of ALS, Huntington’s Disease,593

Parkinson’s Disease, and control subjects. For all series, the mean time series594

length is 190 points. The mean amplitude is 0.2788 and the mean of the595

series is 1.0866, again showing a non-zero mean offset. For pathological596

gait time series, more stationary fGn type characteristics may be expected.597

Given the MSE for β on the range of [0,1] for length of 100, the accuracy of598

DFA, AWC, and lowPSDwe are generally comparable on the order of 10−1.599

Table 3 still show disparity between each estimator, error largely affected600

by the time series length.601

The drastic underestimation of the spectral index by the frequency do-602

main based method is observed in both studies. To avoid error in the es-603

timation introduced by noise, the lowPSDwe necessitates removal of high604

frequency components of 1/8 ∗ fmax. The underestimation of the spectral605

index in the power spectrum indicates a greater effect of the high frequency606

content of the signal, so this adjustment did not quite nullify the effects of607

high frequency biasing. Though the MSE of AWC and DFA are similar,608

the AWC method is similarly biased but has much lower standard devia-609
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tion. DFA on this range again presents significant standard deviation. This610

highlights the critical concern of the application of DFA to pathological time611

series of short length. It is therefore concluded here that the results provided612

by AWC are more tenable.613

It is clear that DFA and spectral methods in many instances require614

extensive modification to properly assess the data. It is seen that necessity615

of such modifications as a potentially hazardous burden which could render616

results incorrect and obfuscate interpretations. Indeed, in the proposal of617

these methods for gait stride interval analysis by Haussdorf, the window618

sizes and fitting ranges for DFA and the frequency range for the spectral619

method linear regression required significant scrutiny to achieve a desired620

result (Hausdorff et al., 1996; Delignieres et al., 2006). In this case, the621

relationship between the scales of the significant physiological frequencies622

and noise frequencies can be inferred in a general sense. However, it is not623

always possible to make a clear distinction between noise and physiolog-624

ically meaningful frequency content in all physiological and experimental625

settings. DFA similarly requires adjustment of the bounds of window size.626

This adjustment can significantly impacts the final calculation, and varies627

between applications depending on the amplitude of fluctuations in the cho-628

sen window. This would require specific specialization of this method for629

each application. The risks and burdens of specialization of these methods630

can be effectively reduced given the generally favorable performance AWC.631

It is noted that the only requirement to avoid errors in AWC is preprocessing632

the signal by subtracting the mean.633
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7. Conclusions634

The objective of this study was to provide a comparative analysis of frac-635

tal characterization algorithms of 1/fβ time series with respect to physio-636

logical applications. Primarily, the numerical analysis allowed us to provide637

insight into the time series lengths and signal classes on which previously638

proposed algorithms returned acceptably accurate results. If fractal charac-639

teristics are of interest for some arbitrary physiological process, it is critical640

to choose a class independent algorithm with consistent accuracy and preci-641

sion. When signal class is not given a priori or classification is not possible,642

the application of class dependent estimators is not feasible. The evalua-643

tion of these algorithms, bdSWV and dispersional analysis, has shown that644

the limited utility of these methods in this setting. However, these are645

still relatively valid evaluations if a signal class can be determined. Once646

a process can be classified as fGn or fBm by a more robust consistent and647

accurate estimator such as AWC, a class specific estimator may provide a648

useful complementary analysis. In contrast to the findings under simulation,649

the inherent nature of experimentally derived physiological signals present650

further challenges in evaluating fractal properties. The sensitivity of power651

spectral methods to a non-zero mean and high frequency were observed, and652

necessitate the task of distinguishing the range of physiologically meaning-653

ful frequencies from noise. Similarly, the potential errors influenced in DFA654

from large local fluctuations in small window sizes are noted. However, the655

application of a method requires the recognition of several key characteris-656

tics of pathological gait time series. First, the understood composition and657

function of the locomotor system insists that the statistical properties of658

the gait outcome can be analyzed to have fractal properties. It has been659
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shown that aging and neurodegenerative diseases result in decreased central660

processing capabilities, proprioception, muscle strength and endurance, and661

significant dysfunction in motor neurons, the cerebral cortex, brain stem,662

and spinal cord. Accordingly, diminished function to any components of663

the locomotor system caused by aging or disease will affect these statistical664

outcomes and thus the fractal characteristic. Another key characteristic of665

pathological time series is the typically shortened length. In light of the666

results of the numerical analysis, the AWC method is recommended as a667

useful tool for measuring the fractal characteristic of time series. This is a668

useful tool which can more rapidly and accurately track functional changes669

in stride interval dynamics. Clinically, this translates to a biomarker of a670

potentially hidden pathology or decline due to disease or aging that can be671

quickly and reliably monitored and inform susbsequent therapeutic interven-672

tion. A final advantage of this application recognized by the comparative673

evaluation of these algorithms is the relief of the burden of specific adjust-674

ments for each application. This numerical and corresponding gait stride675

interval physiological analyses provide a justifiable basis for the applications676

of AWC to a variety signals of interest for a more informative indicator of677

the fractal nature of these processes.678
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of Physiology 439 (4), 403–415.744

Eke, A., Herman, P., Kocsis, L., Kozak, L., 2002. Fractal characterization of745

complexity in temporal physiological signals. Physiological Measurement746

23 (1), R1.747

Fougere, P. F., 1985. On the accuracy of spectrum analysis of red noise748

processes using maximum entropy and periodogram methods: Simula-749

tion studies and application to geophysical data. Journal of Geophysical750

Research 90 (A5), 4355–4366.751

38



Glass, L., 2001. Synchronization and rhythmic processes in physiology. Na-752

ture 410 (6825), 277–284.753

Glenny, R. W., Robertson, H. T., Yamashiro, S., Bassingthwaighte, J. B.,754

1991. Applications of fractal analysis to physiology. Journal of Applied755

Physiology 70 (6), 2351–2367.756

Goldberger, A. L., West, B. J., 1987. Fractals in physiology and medicine.757

The Yale Journal of Biology and Medicine 60 (5), 421.758

Hausdorff, J. M., Lertratanakul, A., Cudkowicz, M. E., Peterson, A. L.,759

Kaliton, D., Goldberger, A. L., 2000. Dynamic markers of altered gait760

rhythm in amyotrophic lateral sclerosis. Journal of Applied Physiology761

88 (6), 2045–2053.762

Hausdorff, J. M., Mitchell, S. L., Firtion, R., Peng, C. K., Cudkowicz, M. E.,763

Wei, J. Y., Goldberger, A. L., 1997. Altered fractal dynamics of gait:764

reduced stride-interval correlations with aging and Huntington’s disease.765

Journal of Applied Physiology 82 (1), 262–269.766

Hausdorff, J. M., Peng, C., Ladin, Z., Wei, J. Y., Goldberger, A. L., 1995.767

Is walking a random walk? Evidence for long-range correlations in stride768

interval of human gait. Journal of Applied Physiology 78 (1), 349–358.769

Hausdorff, J. M., Purdon, P. L., Peng, C. K., Ladin, Z., Wei, J. Y., Gold-770

berger, A. L., 1996. Fractal dynamics of human gait: stability of long-771

range correlations in stride interval fluctuations. Journal of Applied Phys-772

iology 80 (5), 1448–1457.773

Hausdorff, J. M., Zemany, L., Peng, C. K., Goldberger, A. L., 1999. Mat-774

39



uration of gait dynamics: stride-to-stride variability and its temporal or-775

ganization in children. Journal of Applied Physiology 86 (3), 1040–1047.776

Heneghan, C., McDarby, G., 2000. Establishing the relation between de-777

trended fluctuation analysis and power spectral density analysis for778

stochastic processes. Physical Review E 62 (5), 6103.779

Hu, K., Ivanov, P. C., Chen, Z., Carpena, P., Stanley, H. E., 2001. Effect780

of trends on detrended fluctuation analysis. Physical Review E 64 (1),781

011114.782
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